Particulate Matter (1 of 3)

- Complex mixture of solid and liquid particles
- Composed of many different compounds
- Both a primary and secondary pollutant
- Sizes vary tremendously
- Forms in many ways
- Clean-air levels are < 5 µg/m³ *
- Background concentrations can be higher due to dust and smoke
- Concentrations range from 0 to 500+ μ g/m³ *
- Health concerns
 - Can aggravate heart diseases
 - Associated with cardiac arrhythmias and heart attacks
 - Can aggravate lung diseases such as asthma and bronchitis
 - Can increase susceptibility to respiratory infection

^{*} 24-hour average

0.2

Che

Section 7

Ultra-fine fly-

carbon soot

Particulate Matter (2 of 3)

Particles come in different shapes and sizes

Particle sizes

- Ultra-fine particles (<0.1 µm)
- Fine particles (0.1 to 2.5 µm)
- Coarse particles (2.5 to 10 μm)

Crustal material

Carbon chain agglomerates

<u>Section 7 – Chemical As</u> Air I

Relative sizes of particles in air

Relative sizes of particles in air

Particulate Matter (3 of 3)

A clear (left) and dirty (right) PM filter

Particulate Matter Composition (1 of 3)

PM is composed of a mixture of primary and secondary compounds.

- Primary PM (directly emitted)
 - Suspended dust
 - Sea salt
 - Organic carbon
 - Elemental carbon
 - Metals from combustion
 - Small amounts of sulfate and nitrate

- Secondary PM (precursor gases that form PM in the atmosphere

6

Sulfur dioxide (SO₂): forms sulfation Nitrogen oxides (NO_x): forms nitrates Ammonia (NH₃): forms ammonic or compounds Volatile organic compounds (VOCs): form organic carbon compounds • compounds

Particulate Matter Composition

(3 of 3)

Most PM mass in urban and nonurban areas is composed of a combination of the following chemical components

- **Geological Material –** suspended dust consists mainly of oxides of Al, Si, Ca, Ti, Fe, and other metal oxides
- **Ammonium –** ammonium bisulfate, sulfate, and nitrate are most common
- **Sulfate –** results from conversion of SO₂ gas to sulfate-containing particles
- **Nitrate –** results from a reversible gas/particle equilibrium between ammonia (NH_3) , nitric acid (HNO_3) , and particulate ammonium nitrate

- **NaCI** salt is found in PM near sea coasts and after de-icing materials are applied
- Organic Carbon (OC) consists Section 7 – Chemical Aspects of <u>Air Pollution</u> hundreds of separate compounds containing mainly carbon, hydrogen and oxygen
- Elemental Carbon (EC) composed of carbon without much hydrocarbon or oxygen. EC is black, often called soot.
- Liquid Water soluble nitrates, sulfates, ammonium, sodium, other inorganic ions, and some organic material absorb water vapor from the atmosphere

Physiochemical Properties

Physical Characteristics

particle surface area, particle number, particle mass, particle size distribution, surface chemistry, surface charge

Chemical Components

biological components (e.g., pollen, microbes)

ions (sulfates, nitrates, ammonium)

strong acidity (H⁺)

transition metals (water soluble, bioavailable, oxidant generation)

elemental carbon

organic carbon (total, nonvolatile, and semivolatile, functional groups and individual species)

PM Emissions Sources (1 of 4)

Point – generally a major facility emitting pollutants from identifiable sources (pipe or smoke stack). Facilities are typically permitted.

PM Emissions Sources (2 of 4)

Area – any low-level source of air pollution released over a diffuse area (not a point) such as consumer products, architectural coatings, waste treatment facilities, animal feeding operations, construction, open burning, residential wood burning, swimming pools, and charbroilers

PM Emissions Sources (3 of 4) Mobile

- On-road is any moving source of air pollution such as cars, trucks, motorcycles, and buses
- Non-road sources include pollutants emitted by combustion engines on farm and construction equipment, locomotives, commercial marine vessels, recreational watercraft, airplanes, snow mobiles, agricultural equipment, and lawn and garden equipment

PM Emissions Sources (4 of 4)

Natural – biogenic and geogenic emissions from wildfires, wind blown dust, plants, trees, grasses, volcanoes, geysers, seeps, soil, and lightning

What are aerosols?

- Types
 - Dust
 - Sea salt
 - Sulfates
 - Black carbon
 - Organic matter
 - Nitrates

Volcanic ash

Pollen

<u>Sea salt</u>

<u>Soot</u>

ORIGIN OF THE ATMOSPHERIC AEROSOL

Aerosol: dispersed condensed matter suspended in a gas Size range: 0.001 μm (molecular cluster) to 100 μm (small raindrop)

Environmental importance: health (respiration), visibility, radiative balance, cloud formation, heterogeneous reactions, delivery of nutrients...

Sea Salt

- Mainly from the oceans
- Solid particles unless hydrated with water
- Mostly natural
- Causes cooling

Sulfates (nitrates are similar)

- Secondary emission
 - Produced from SO₂ or DMS
- Mostly from humans
 - Fossil fuel combustion
- Albedo of 0.99
 - Does this cause warming or cooling?
- SQ, from anthropogenic sources in 2000 Sources: EDGAR 32FT2000

Cooling

Black carbon

- Mostly from biomass burning and fossil fuel combustion
- Appears black to the naked eye
 - What would it's albedo be?
 - Close to 0
 - Does this cause warming or cooling?
 - Warming over snow/ice especially!

Organic Matter

- Variety of compounds
- Natural or from humans
 - Terpenes from trees, vegetation
 - Fossil fuel and biomass burning
- Can be primary or secondary emissions

NMVOC from anthropogenic sources in 1990 Global total: 176 Tg NMVOC (min = 0.035, max = 1.2 Gg)

Desert dust

Saharan dust storm off West African coas

- Dust
 - Deserts
 - Agriculture
- Sea salt
 - Oceans
- Sulfates
 - Chemical reaction of sulfur dioxide
 - Volcanoes
 - Fossil fuel burning
 - Marine plankton

- Pale yellow
 - Clear sky
 - Maximum visibility
- Dark red-brown
 - Very hazy conditions
- <u>Video of aerosol</u>
 <u>optical depth over</u>
 <u>time (1/05 6/12)</u>

- High concentrations due to land clearing and agricultural fires (dry seasons)
 - South America
 - July Sept
 - Central America
 - March May
 - Central and south Africa
 - June Sept
 - Southeast Asia
 - January April

- High concentrations due to dust storms
 - Arabian Peninsula
 - May August
- High concentrations due to humanproduced air pollution
 - Northern India and Himalayas region
 - Many months
 - Eastern China
 - Most of the year

Particulate Matter Chemistry (1 of 4) **Coagulation:** Particles collide and stick together. **Condensation:** Gases condense onto a small solid particle to form a liquid droplet. <u>Chemical Asp</u> **Cloud/Fog Processes:** Gases dissolve in a water droplet and chemically react. A particle exists when the water evaporates. Sulfate Chemical Reaction: Gases react to form particles.

Particulate Matter Chemistry (2 of 4

Sulfate Chemistry

- Virtually all ambient sulfate (99%) is secondary, formed within the atmosphere from SO₂ during the summer.
- About half of SO₂ oxidation to sulfate occurs in the gas phase through photochemical oxidation in the daytime. NO_x and hydrocarbon emissions tend to enhance the photochemical oxidation rate.
- At least half of SO₂ oxidation takes place in cloud droplets as air molecules react in clouds.
- Within clouds, soluble pollutant gases, such as SO₂, are scavenged by water droplets and rapidly oxidize to sulfate.
- Only a small fraction of cloud droplets deposit out as rain; most droplets evaporate and leave a sulfate residue or "convective debris".
- Typical conversion rate 1-10% per hour

Particulate Matter Chemistry (3 of

Nitrate Chemistry

- NO₂ can be converted to nitric acid (HNO₃) by reaction with hydroxyl radicals (OH) during the day.
 - The reaction of OH with NO_2 is about 10 times faster than the OH reaction with SO_2 .
 - The peak daytime conversion rate of NO₂ to HNO₃ in the gas phase is about 10% to 50% per hour.
- During the nighttime, NO₂ is converted into HNO₃ by a series of reactions involving ozone and the nitrate radical.
- Section 7 Chemical Aspects of Air Pollution HNO₃ reacts with ammonia to form particulate ammonium nitrate (NH_4NO_3) .

25

Thus, PM nitrate can be formed at night and during the day; daytime photochemistry also forms ozone.

Particulate Matter Chemistry (40

Particulate Matter Meteorology

How weather affects PM emissions, formation, and transport

Phenomena	Emissions	PM Formation	PM Transport/Loss
Aloft Pressure Pattern	No direct impact.	No direct impact.	 Ridges tend to produce conditions conducive for accumulation of PM_{2.5}. Troughs tend to produce conditions conducive for dispersion and removal of PM and ozone. In mountain-valley regions, strong wintertime inversions and high PM_{2.5} levels may not be altered by weak troughs. High PM_{2.5} concentrations often occur during the approach of a trough from the west.
Winds and Transport	No direct impact.	In general, stronger winds disperse pollutants, resulting in a less ideal mixture of pollutants for chemical reactions that produce PM _{2.5} .	Strong surface winds tend to disperse $PM_{2.5}$ regardless of season. Strong winds can create dust which can increase $PM_{2.5}$ concentrations.
Temperature Inversions	No direct impact.	Inversions reduce vertical mixing and therefore increase chemical concentrations of precursors. Higher concentrations of precursors can produce faster, more efficient chemical reactions that produce PM _{2.5} .	A strong inversion acts to limit vertical mixing allowing for the accumulation of PM _{2.5} .
Rain	Reduces soil and fire emissions	Rain can remove precursors of PM _{2.5} .	Rain can remove PM _{2.5} .
Moisture	No direct impact.	Moisture acts to increase the production of secondary PM _{2.5} including sulfates and nitrates.	No direct impact.
Temperature	Warm temperatures are associated with increased evaporative, biogenic, and power plant emissions, which act to increase $PM_{2.5}$. Cold temperatures can also indirectly influence $PM_{2.5}$ concentrations (i.e., home heating on winter nights).	Photochemical reaction rates increase with temperature.	Although warm surface temperatures are generally associated with poor air quality conditions, very warm temperatures can increase vertical mixing and dispersion of pollutants. Warm temperatures may volatize Nitrates from a solid to a gas. Very cold surface temperatures during the winter may produce strong surface-based inversions that confine pollutants to a shallow layer.
Clouds/Fog	No direct impact.	Water droplets can enhance the formation of secondary PM _{2.5} . Clouds can limit photochemistry, which limits photochemical production.	Convective clouds are an indication of strong vertical mixing, which disperses pollutants.
Season	Forest fires, wood burning, agriculture burning, field tilling, windblown dust, road dust, and construction vary by season.	The sun angle changes with season, which changes the amount of solar radiation available for photochemistry.	No direct impact.

Particulate Matter Standards

- <u>High-volume samplers measured PM by Total Suspended</u> <u>Particulate Matter (TSP). TSP usually less than 25-50 μg/m³</u>.
 <u>Concentrations measured usually around 260 μg/m³</u>.
- Based on research in the 1960s and 1970s, the human respiratory system was found to be affected by PM that was finer than what high-volume samplers measured.
- <u>A new standard based on PM₁₀ was established using a 24-hour concentration of 150 μg/m³.</u>

AEROSOL OPTICAL DEPTH (GLOBAL MODEL)

AEROSOL OBSERVATIONS FROM SPACE

Biomass fire haze in central America yesterday (4/30/03)

Fire locations in red

(<u>30</u>)

Modis.gsfc.nasa.gov

BLACK CARBON EMISSIONS

Particles Impact Human Health and MORE

Suppression of Rain and Snow by Urban and Industrial Air Pollution

Courtesy of D. Rosenfeld.

EPA REGIONAL HAZE RULE: FEDERAL CLASS I AREAS TO RETURN TO "NATURAL" VISIBILEVELS BY 2064

...will require essentially total elimination of anthropogenic aerosols!

clean day

moderately polluted day

33

Acadia National Park

http://www.hazecam.net/